Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Year range
1.
RSC advances ; 12(49):31608-31616, 2022.
Article in English | EuropePMC | ID: covidwho-2112016

ABSTRACT

The excessive use of sodium hypochlorite disinfectant for preventing COVID-19 can be harmful to the water environment and humans. More importantly, owing to hypochlorite being a biomarker of immune responses in living organisms, its abnormal production can damage nucleic acids and protein molecules, eventually causing many diseases (even cancer). Exploring a reliable, rapid, and non-invasive method to monitor the hypochlorite level in vitro and in cells can be significant. Herein, we report a novel ratiometric fluorescence sensing strategy based on Astrazon Brilliant Red 4G dye-sensitized NaGdF4:Yb3+, Er3+@NaYF4 core–shell upconversion nanoparticles (UCNPs@ABR 4G). Based on the combination mechanism of the fluorescent resonant energy transfer effect (FRET) and redox, a linear model of fluorescence intensity ratio and hypochlorite concentration was constructed for a fast response and high selectivity monitoring of hypochlorite in vitro and in vivo. The detection limit was calculated to be 0.39 μM. In addition, this sensing strategy possessed good stability and circularity, making it valuable both for the quantitative detection of hypochlorite in water and for the visualization of intracellular hypochlorite. The proposed optical probe is promising for the efficient and stable non-invasive detection of hypochlorite. The excessive use of sodium hypochlorite disinfectant for preventing COVID-19 can be harmful to the water environment and humans.

3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1381122.v1

ABSTRACT

Population antibody response is believed to be important in selection of new variant viruses. We identified that SARS-CoV-2 infections elicit a population immune response mediated by a lineage of VH1-69 germline antibodies. The representative antibody R1-32 targets a novel semi-cryptic epitope defining a new class of RBD targeting antibodies. Binding to this non-ACE2 competing epitope leading to spike destruction impairing virus entry. Based on epitope location, neutralization mechanism and analysis of antibody binding to spike variants we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of this population antibody response. These substitutions, including L452R found in the Delta variant, disrupt interaction mediated by the VH1-69 specific hydrophobic HCDR2 to impair antibody-antigen association allowing variants to escape. Lacking 452/490 substitutions, the Omicron variant is sensitive to this class of antibodies. Our results provide new insights into SARS-CoV-2 variant genesis and immune evasion.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL